

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY

Department of Mathematics

SEMINAR ON APPLIED MATHEMATICS

Riemannian Proximal Gradient Methods

By

Prof. Ke WEI School of Data Science Fudan University

<u>Abstract</u>

In the Euclidean setting, the proximal gradient method and its accelerated variants are a class of efficient algorithms for optimization problems with decomposable objective. In this paper, we develop a Riemannian proximal gradient method (RPG) and its accelerated variant (ARPG) for similar problems but constrained on a manifold. The global convergence of RPG has been established under mild assumptions, and the O(1/k) is also derived for RPG based on the notion of retraction convexity. If assuming the objective function obeys the Rimannian Kurdyka-Lojasiewicz (KL) property, it is further shown that the sequence generated by RPG converges to a single stationary point. As in the Euclidean setting, local convergence rate can be established if the objective function of a semialgebraic function onto the Stiefel manifold satisfies the Riemannian KL property with an exponent. Moreover, we have shown that the restriction of a semialgebraic function onto the Stiefel manifold satisfies the Riemannian KL property, which covers for example the well-known sparse PCA problem. Numerical experiments on random and synthetic data are conducted to test the performance of the proposed RPG and ARPG. (Joint work with Wen Huang from Xiamen University).

Date: 29 April 2022 (Friday)

Time : 1:30pm

Zoom Meeting : https://hkust.zoom.us/j/93425301476 (Passcode: 101365)

All are Welcome!